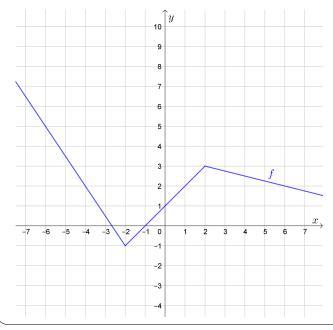
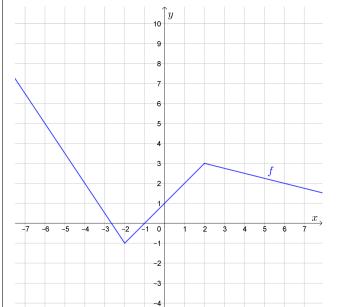
Name:	Matrikelnummer:	Gruppe:
-------	-----------------	---------

- Arbeitszeit: 45 Minuten Erreichte Punkte: von 10
- Prüfungsstoff: 9.–10. Schulstufe vgl. "So viel Rechnen muss sein"
- Bei jeder Aufgabe sind 2 Punkte zu erreichen.
- Vereinfache die Ergebnisse so weit wie möglich.

(1) Der Graph der stückweise linearen Funktion $f: \mathbb{R} \to \mathbb{R}$ hat genau zwei Knickstellen.

Für die Funktion g gilt an jeder Stelle $x \in \mathbb{R}$:


R: | Für die Funktion
$$h$$
 gilt an jeder Stelle $x \in \mathbb{R}$:


h(x) = f(x+3)

$$g(x) = f(x) + 3$$

Zeichne den Graphen von h ein:

Zeichne den Graphen von gein:

(2) Die drei Punkte

$$A = (2 \cdot t \mid 4 \mid 3), \quad B = (3 \cdot t \mid 7 \mid 2) \quad \text{und} \quad C = (3 \cdot t + 2 \mid 2 \mid t + 3)$$

spannen ein rechtwinkeliges Dreieck im Raum auf.

Für welche Zahlen $t \in \mathbb{R}$ ist der Punkt A der Scheitel des rechten Winkels?

250016 Einführung in das mathematische Arbeiten und Rechenübungen

(3)

a) Es gilt x > 0. Vereinfache den Term

$$\frac{\sqrt{25 \cdot x^2 - 16 \cdot x^2}}{x}$$

so weit wie möglich.

b) Es gilt a, b > 1. Vereinfache den Term

$$a^{\log_a(b)\cdot\log_b(a)}$$

so weit wie möglich.

(4)

- a) Berechne das Ergebnis: $\frac{10!}{8! \cdot 2!}$
- b) Dir stehen 3 Symboltypen in unterschiedlicher Anzahl zur Verfügung: $4\times \bigcirc$, $2\times \widehat{T}$, $1\times \widehat{\square}$ Diese insgesamt 7 Symbole sollen von links nach rechts angeordnet werden. Eine mögliche Anordung ist links dargestellt:

_1	2	3	4	5	6	7

Wie viele verschiedene Anordnungen dieser 7 Symbole sind insgesamt möglich?

(5)

a) Es gibt genau einen Winkel $\alpha,$ der die drei Bedingungen

i)
$$\cos(\alpha) = \cos(42^{\circ})$$
 ii) $0^{\circ} \le \alpha < 360^{\circ}$ und iii) $\alpha \ne 42^{\circ}$

erfüllt. Fertige eine Skizze am Einheitskreis an, und berechne diesen Winkel α .

b) Ist der Winkel β durch die zwei Bedingungen

i)
$$\sin(\beta) = \cos(42^\circ)$$
 und ii) $0^\circ \le \beta < 360^\circ$

eindeutig festgelegt?

Falls ja, warum? Falls nein, welche Winkel β erfüllen beide Bedingungen?